Smooth Robust Adaptive Sliding Mode Control of Manipulators With Guaranteed Transient Performance
نویسندگان
چکیده
A systematic way to combine adaptive control and sliding mode control (SMC) for trajectory tracking of robot manipulators in the presence of parametric uncertainties and uncertain nonlinearities is developed. Continuous sliding mode controllers without reaching transients and chattering problems are rst developed by using a dynamic sliding mode. Transient performance is guaranteed and globally uniformly ultimately bounded (GUUB) stability is obtained. An adaptive scheme is also developed for comparison. With some modi cations to the adaptation law, the control law is redesigned by combining the design methodologies of adaptive control and sliding mode control. The suggested controller preserves the advantages of both methods, namely, asymptotic stability of the adaptive system for parametric uncertainties and GUUB stability with guaranteed transient performance of sliding mode control for both parametric uncertainties and uncertain nonlinearities. The control law is continuous and the chattering problem of sliding mode control is avoided. A prior knowledge of bounds on parametric uncertainties and uncertain nonlinearities is assumed. Experimental results conducted on the UCB/NSK SCARA direct drive robot show that the combined method reduces the nal tracking error to more than half of the smoothed SMC laws for a payload uncertainty of 6kg, and validate the advantage of introducing parameter adaptation in the smoothed SMC laws.
منابع مشابه
Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque
In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کاملA continuous-time observer which converges in finite time
the control law (3) does not only improves the transient performance, but also provides smoother outputs. It is important to stress that a better performance can still be achieved with (28) and (30). However, as discussed in Remark IV.1, increasing gains would not only cause more peaks in the outputs, but it might also yield saturation, especially for 2. V. CONCLUSION The tracking control probl...
متن کاملAdaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملRobust Adaptive Attitude Stabilization of a Fighter Aircraft in the Presence of Input Constraints
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonli...
متن کامل